

SUNBORNE ENERGY DISCUSSION WITH Forum of Electricity Regulators

November 20th 2009

Aseem Sharma
Chief Operating Officer

Agenda

- Understanding CSP Plant Economics
- CSP Costs
- CSP Plant Efficiency / Capacity Factors
- Weather Data
- Radiation and Electric Output comparison US/India
- Recommendations

Different Solar Technologies

Various types of CSP

gn Tower

Dish

- 20 + years of operational experience worldwide
- 500+MW installed
- · Established global supply chain
- · Molten salt, or hot oil storage
- · Indirect steam generation
- Array of individually tracking mirrors
- Less land requirement
- Small scale demo plants operating
- Molten salt storage capability
- Higher operating temp

- Distributed systems possible
- Higher temperature
- Higher cost
- Not proven at scale
- Limited storage capability
- Suitable for off-grid generation

- Lower efficiency
- · Lower cost
- · Unproven tech

CSP Deployment by Technology

CSP Technology

CSP Deployment by Technology

Proposed/ Under Construction

Understanding CSP Plant Economics

Economics are largely driven by

- Capital Costs/MW
 - Design
 - Equipment costs
 - Localization
 - Import Duties
 - Land, Engineering & Construction costs
- Operating Costs/MW of energy generated
 - Raw Material Costs Minimal
 - Labor, Maintenance, Services

Understanding CSP plant economics

- Plant Efficiency
 - Latitude/Location
 - Design/Technology
- Plant Capacity Factor
 - Latitude/Location
 - Climatic Conditions
 - Solar Radiation
 - Quantity Yearly average
 - Quality Normal Direct vs. Total
- Plant Financing
 - Debt Ratio
 - Debt Rate
 - Debt Term

CSP Capital Costs - Historical

- Cost/MW installed
- Reliable Historical Data
 - Nevada Solar One
 - \$266MM for a 64MW Plant = \$4.15MM/MW
 - \$266MM assuming 72MW Nominal Capacity = \$3.69MM/MW
 - Acciona Plants In Spain
 - Under construction 1st to be commissioned in Aug 09
 - \$4MM/MW
 - Andasol 1, 2 included 7.5 hours of storage
 - Euro 300MM each = \$420MM/50MW = \$8.4MM/MW
 - MASDAR SHAMS 1 \$4MM/MW
- SunBorne Target for 1st India Plant = \$3.5MM/MW ~ 17Cr
 - Assuming all import duties are removed
 - Driven by using local EPC
 - Aggressive local procurement

Current Global Cap Ex norms are near \$4MM/MW SunBorne SunBorne estimates \$3.5MM/MW for India

^{*} Actual cost as suggested by Nevada solar 1 team

^{**} Includes 7.5 hours of storage Source: Industry sources, CERC solar tariff guideline, SunBorne estimates

- Source of energy is free
- Labor rates will be better in India
- Maintenance is largely consumables (breakage, wear & tear)
- Pay for water, gas (if hybrid or partial)
- NREL estimates \$25/MWhr
- SunBorne Estimate \$20-25/MWhr for India(matches
 CERC estimates of Rs 960/MW)

SunBorne ?

Plant efficiency / Capacity Factor

- CSP Plant will operate at ~ 14% efficiency in locations we have evaluated in Gujarat/Rajasthan
- Plant Capacity Factor = 17-20% for West India locations
 - Latitude/Location Favorable compared to US/Spain
 - Lower latitudes will have better sun incident angle and hence better performance
 - Climatic Conditions Favorable compared to US/Spain
 - Temperatures and wind speed are more favorable in India
 - Solar Radiation
 - Quantity Yearly average
 - Comparable to Spain but below best US locations
 - Monsoons play a significant role over much of India including Gujarat
 - Quality Normal Direct vs. Total

Monsoon impact on Direct Solar SunBorg Radiation at Jodhpur

- •Monsoons have a significant impact on Indian radiation
- •Capacity Factor will be ~ 20%
- •However CSP can address this issue through
 - Hybridization
 - Storage

Direct Solar Radiation Comparison SunBorne ? Solar Value of the Solar Radiation Comparison SunBorne ? Solar Radiation SunBorne ? Solar Radiation SunBorne ? Solar Radiation SunBorne ? S

Best Solar Radiation in US is better than Jodhpur Cannot translate US Capacity Factors for India locations

Capacity Factor Comparison between Daggett, USA and Ahmadabad

Analysis is done using NREL's SAM model

DNI impact because of monsoons is significant

Monthly Electrical Output USA vs. Jodhpur

Daggett, CA

Jodhpur, RJ

- Monsoon has a significant impact on CSP plant performance in India
- •Capacity Factors for Jodhpur will be 20% compared to 25% for SEGS Plants in California
- •Hybridization and Storage can increase the Capacity Factor to 25% or more

Monthly Electrical Output USA vs. Ahmadabad

Daggett, CA

Ahmadabad, GJ

Monsoon has a significant impact on CSP plant performance in India Capacity Factor for Ahmadabad will be 17-18%

Hybridization and Storage Significantly Improve Economics

- SunBorne recommendation is to allow up to 25% hybridization
- This will raise Capacity Factor from 18% to 25%.
- Hybridization smoothes out output
- It ill reduce startup losses
- It will lower LCOE
- Every hour of storage increases Capacity Factor by 4%
 - How much will be driven by tariff and costs

SunBorne O

Summary

- Expected Capital Expense for initial CSP Plants in India will be ~17cr/MW (over time the costs will drop)
- Capacity Factors expected with monsoon impact will be 17-20%
- Tariffs should be technology neutral
- Only CSP can take advantage of Hybridization and Storage to boost Capacity Factors and provide power to meet peak load
- Ideal Hybridization will be up to 25%
- Ideal storage will be company specific and will depend on tariff
- Storage will allow generators to match peak loads